

Dr Marcus N. Bannerman & Dr Leo Lue

m.campbellbannerman@abdn.ac.uk leo.lue@strath.ac.uk

Section Outline

[Heteropolymer models](#page-1-0)

Heteropolymer models

Contact maps

6-mer with 1-6 contact

Square-well homopolymer: $N_c = 20, \sigma/l = 1.6, \lambda = 1.5$

Section Outline

[Replica exchange](#page-5-0)

Replica exchange

- "Rough" energy landscapes are hard to sample at low temperature (get stuck in local minima)
- High-temperature simulations can glide over barriers

Exchange complete configurations (with energies U_0 and U_1) between simulations run in parallel at different reciprocal temperatures (β_0 and β_1 , respectively)

$$
\frac{\mathcal{P}(n)}{\mathcal{P}(o)} = \frac{e^{-\beta_0 U_1} \times e^{-\beta_1 U_0}}{e^{-\beta_0 U_0} \times e^{-\beta_1 U_1}} = e^{-(\beta_0 - \beta_1)(U_1 - U_0)}
$$

QL Yan and JJ de Pablo, J. Chem. Phys. 111, 9509 (1999) A Kone and DA Kofke, J. Chem. Phys. 122, 206101 (2005)

Replica exchange: Simple example

- \blacktriangleright Model one-dimensional system (after Frenkel and Smit)
- \triangleright Single particle in unit box (with periodic boundary conditions)
- External potential $U(x)$
- \triangleright Start $x = 0$
- \triangleright $\Delta x = \pm 0.005$
- \blacktriangleright 10⁶ MC moves

Replica exchange: Simple example

- \blacktriangleright Without parallel tempering
- \triangleright Simulations (point); exact (lines)

[Replica exchange](#page-9-0)

Replica exchange: Simple example

- \triangleright With parallel tempering
- Five reciprocal temperatures ($\beta^* = 0$, 4, 8, 12, and 16)
- \blacktriangleright 10% swap moves with neighboring temperatures

Replica exchange with DynamO

Create a series of configuration files at different temperatures:

Execute dynarun with the replica exchange simulation engine:

dynarun config .*. start . xml . bz2 -- engine 2 -i 1 -f 100

Section Outline

[Histogram reweighting](#page-11-0)

Histogram extrapolation

► Consider an NVT simulation at β_0 , where we collect the

$$
\mathcal{P}(E; \beta_0) = \frac{\Omega(N, V, E)}{Q(N, V, \beta_0)} e^{-\beta_0 E}
$$

$$
\mathcal{H}(E; \beta_0) \propto \Omega(N, V, E) e^{-\beta_0 E}
$$

 \blacktriangleright Estimate for the density of states:

$$
\Omega(N, V, E) \propto \mathcal{H}(E; \beta_0) e^{\beta_0 E}
$$

 \blacktriangleright Using the estimate for Ω(N, V, E), we can estimate the histogram at any other β

$$
\mathcal{P}(E; \beta) = \frac{\Omega(N, V, E)}{Q(N, V, \beta)} e^{-\beta E}
$$

$$
\mathcal{H}(E; \beta) \propto \Omega(N, V, E) e^{-\beta E}
$$

$$
\propto \mathcal{H}(E; \beta_0) e^{-(\beta - \beta_0)E}
$$

Histogram extrapolation: Other properties

 \triangleright Other properties can be extrapolated by collecting the joint probability distribution at β_0

$$
\mathcal{P}(X, E; \beta_0) = \frac{\Omega(N, V, E, X)}{Q(N, V, \beta_0)} e^{-\beta_0 E}
$$

$$
\mathcal{H}(X, E; \beta_0) \propto \Omega(N, V, E, X) e^{-\beta_0 E}
$$

 \blacktriangleright Estimate for the modified density of states:

$$
\Omega(N, V, E, X) \propto \mathcal{H}(X, E; \beta_0) e^{\beta_0 E}
$$

Using the estimate for $\Omega(N, V, E)$, we can estimate the histogram at any other β

$$
\mathcal{H}(X, E; \beta) \propto \Omega(N, V, E, X) e^{-\beta E}
$$

$$
\propto \mathcal{H}(X, E; \beta_0) e^{-(\beta - \beta_0)E}
$$

Histogram interpolation

 \triangleright Consider the case where we perform NVT simulations at several temperatures β_1 , β_2 ,..., β_n where we collect the histograms:

$$
\mathcal{H}(X,E;\beta_k)\propto \Omega(N,V,E,X)e^{-\beta_kE}
$$

Estimate for the density of states as a weighted sum:

$$
\ln \Omega(N, V, E, X) \propto \sum_{k} w_k \ln(\mathcal{H}(X, E; \beta_k) e^{\beta_k E})
$$

where $\sum_k w_k = 1$.

- Fine uncertainty in ln $\mathcal{H}(X, E; \beta_k)$ is roughly $[\mathcal{H}(X, E; \beta_k)]^{-1/2}$
- **IDE** Determine the weights w_k by minimizing the uncertainty of the estimate of the density of states.