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What is DynamO?

What is DynamO?

I DynamO stands for Dynamics of discrete Objects.

I It is a particle dynamics package and is one of the very few which uses an
event-driven simulation approach.

I Event-driven dynamics is mainly applied to relatively simple potentials
(hard-sphere, square-well) but the approach is more general than it first
appears.

I To illustrate this, we introduce particle dynamics using more traditional
time-stepping methods and demonstrate how results from the two approaches
may be made equivalent.
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What is DynamO? What is the particle dynamics approach?

I Particle dynamics is a classical mechanics approach to simulating physical
systems.

I To model a system, its mass is divided into a number of discrete particles:

I These particles typically represent some fundamental unit of mass in the
system studied. . .

MNB & LL DynamO Workshop 23/01/2015 6 / 32



What is DynamO? What is the particle dynamics approach?
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What is DynamO? What is the particle dynamics approach?
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What is DynamO? What is the particle dynamics approach?

I Each of these systems are simulated by integrating Newton’s equation of
motion (EOM) as expressed for each particle:

F i = mi ai = mi v̇ i = mi r̈ i

where F i is the force acting on particle i , mi is its mass, ai is its acceleration,
v i is its velocity, and r i is its position.

I It is the model expressions used for the forces, F i , which distinguishes which
system is under study.
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What is DynamO? What is the particle dynamics approach?

I Although force models are common in time-stepping simulations, the forces
in event-driven simulation are not easily defined as each event generates an
instantaneous impulse. Certain classes of finite forces may also be included in
event-driven dynamics (e.g., gravity, oscillating objects).

I Impulsive and continuous forces may be dissipative or conservative, but we
will only consider conservative forces today.

I This allows us to compare time-stepping and event-driven approaches
through their potential energy function.
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What is DynamO? Spring-mass: Analytical

I To illustrate this, consider the simplest one-dimensional particle system: a
mass, mi , bound to an immobile wall by a spring.

I Inserting Hooke’s law for the force of a spring (rest position of ri = 0) into
Newton’s equation of motion, we have:

Fi = mi r̈i = −k ri
I Taking the initial conditions that the spring is at rest ri (t = 0) = 0 and in

motion vi (t = 0) = Aω, the solution to this ODE is:

ri = A sin(ω t) vi = Aω cos(ω t)

where ω =
√
k/mi is the frequency of oscillation.

I This is the goal of particle dynamics: to determine the time-evolution of the
system phase variables [ri , vi ].
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What is DynamO? Spring-mass: Analytical

Figure: The exact phase space trajectory of the spring mass system. The parameters k,
mi , and initial velocity vi (t = 0) are set to 1 and the initial position is set to
ri (t = 0) = 0 which gives the solution as a circle of radius 1.
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What is DynamO? Spring-mass: Time-stepping

I Assume that Newton’s EOM cannot be analytically integrated due to its
complexity.

I In time-stepping simulations, numerical integration is used to solve Newton’s
EOM.

I For example, take a Taylor series of ri and vi at the current time t and
truncate high order terms:

ri (t + ∆t) = ri (t) + ∆t vi (t) +���
�:0

O(∆t2)

vi (t + ∆t) = vi (t) + ∆t ai (t) +���
�:0

O(∆t2)

where formally ∆t is a small “time-step”.
I This forward-Euler integration allows us to “take a time step” and estimate

ri (t + ∆t) and vi (t + ∆t) from the initial conditions ri (t), vi (t).
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What is DynamO? Spring-mass: Time-stepping
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Figure: Numerical solution of the spring mass system over 500 time steps using the
Euler integrator and two different step sizes ∆t . The error of truncating higher order
terms has a consistent bias causing a steady increase in total energy.

MNB & LL DynamO Workshop 23/01/2015 14 / 32



What is DynamO? Spring-mass: Time-stepping
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Figure: As before, but using the Velocity Verlet integrator (below) which is symmetric
in time. This significantly improves conservation of energy but still simulates a perturbed
system; however, for this system even relatively large time steps are extremely close to
the exact solution.

r i (t + ∆t) = r i (t) + ∆t v i (t) +
∆t2

2
ai (t)

v i (t + ∆t) = v i (t) +
∆t

2
(ai (t) + ai (t + ∆t))
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What is DynamO? Spring-mass: Event-driven

I Now consider the Event-Driven Particle Dynamics (EDPD) approach.

I Assuming Newton’s EOM is too complex to analytically integrate, we must
decouple the motion of each particle from the rest of the system (for a short
period of time) to allow an analytical solution to its motion.

I To demonstrate this, we decouple the action of the spring.

I Consider the energetic potential of the spring:

Ui = k r2i /2

I To simulate this system using EDPD we must consider a discrete or
“stepped” approximation of the spring potential. . .
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What is DynamO? Spring-mass: Event-driven
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Figure: The potential energy of a spring as a function of position, and two different
“stepped” approximations. A potential step1, ∆U, is introduced as a measure of the
maximum deviation between the continuous and discrete potentials. The potential step,
∆U, (like the time step ∆t) controls the accuracy relative to the exact solution.

1C. Thomson, L. Lue, and M. N. Bannerman, “Mapping continuous potentials to discrete forms,” J.
Chem. Phys., 140, 034105 (2014)
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What is DynamO? Spring-mass: Event-driven

I Between discontinuities, ∂Ui/∂ri = 0 and
therefore F i = 0.

I As the force is zero, the particle is
temporarily decoupled from the spring and
the “free-motion” of the system is trivial
ballistic motion:

r i (t + ∆t) = r i (t) + ∆t v i (t)

I This is a successful decoupling as between
discontinuities the motion of the system is
analytically described by the equation above.

I We must be careful not to cross a
discontinuity while using the analytical
solution above.

I Instead, these must be separately treated
the instant the discontinuity is encountered.
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What is DynamO? Spring-mass: Event-driven

I If we can detect a priori the crossing of a
discontinuity (an event),

I . . . and calculate the resulting impulse at the
time of the crossing,

I we can skip the solution of the
“free-motion” entirely.

I EDPD algorithm:

1. Search for the next discontinuity
crossing/event.

2. Skip through the free motion of the system
to the time of the next event.

3. Calculate and apply the impulse.
4. Repeat until the end of the simulation.
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What is DynamO? Spring-mass: Event-driven

Figure: At low densities, event-driven algorithms can skip uninteresting parts of the
dynamics.

I To detect a crossing of a discontinuity (event), consider two particles i and j
and discontinuity at a relative separation distance of σ.

I The test for the event is expressed as a search for the (positive) roots of an
overlap function, f (t):

f (t) = |r i (t)− r k (t)| − σ
where f (t) is a measure of the distance from a discontinuity in the potential.

I Solving for the event impulse, ∆P is a search for the appropriate solution to
the conservation of energy (and momentum):

1

2
mi v 2

i +
1

2
mj v 2

j + ∆U =
1

2
mi

(
v i +

∆P
mi

)2

+
1

2
mj

(
v j −

∆P
mi

)2

where ∆U is the change in internal energy due to the discontinuity.
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What is DynamO? Spring-mass: Event-driven

Figure: At low densities, event-driven algorithms can skip uninteresting parts of the
dynamics.

I Event-driven dynamics can only be applied if stable root-detection algorithms
are available for the overlap and energy balance functions.

I If these exist, event-driven dynamics is an “exact” (to machine precision)
solution of the dynamics of the stepped model.

I Energy is conserved to machine precision.
I Round-off error is generally reduced as, during events which don’t involve

them, particles are left untouched (time-warp).
I Aside from round-off error, the simulated dynamics is reversible (preserves

detailed balance) and the simulation may be safely coupled with Monte Carlo
techniques.

I Although the stepped spring model is not exactly equivalent to Hooke’s law,
the stepped approximation may be used to approximate real systems.
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What is DynamO? Spring-mass: Event-driven
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Figure: The phase space trajectory of the spring-mass system approximated using a
stepped/discrete potential and EDPD. Vertical sections correspond to instantaneous
jumps in the velocity due to the impulse of an event. Horizontal sections correspond to
the “free-motion” of the system. In larger (N > 1) systems, effects of the discontinuities
are “smoothed” out.
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EDPD versus time-stepping approaches Performance

Comparison: Continuous vs Stepped Lennard-Jones
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Figure: Relative speed of Time-Stepping (TS) versus Event-Driven (ED) simulation of a
Lennard-Jones system with rcutoff = 3. The stepped approximation was chosen to
reproduce the liquid-vapour densities to high accuracy and transport coefficients to
within 10%.1

1C. Thomson, L. Lue, and M. N. Bannerman, “Mapping continuous potentials to discrete forms,” J.
Chem. Phys., 140, 034105 (2014)
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EDPD versus time-stepping approaches Performance

Performance Summary

I Force models such as the Lennard-Jones potential with a cut-off of 3.0 are
too “soft” for stepped potentials to compete with at liquid densities (gas
densities ED performs increasingly better).

I Although stepped potentials can approximate continuous systems, EDPD
should not be applied to simulate continuous potentials (except for the
rare-gas limit e.g., space vehicle re-entry).

I Time-stepping should also not be used for “hard” potentials as EDPD is
significantly faster.

I EDPD is particularly fast when used on “coarse-grained” potentials, such as
the hard-sphere or square well, and these are at the heart of many theoretical
descriptions:
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EDPD versus time-stepping approaches Performance
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Figure: The hard sphere (left) and square-well (right) potentials. These are the most
computationally efficient models available for simulation of non-ideal fluids, and the basis
for much of the available theoretical molecular descriptions (kinetic theory,
thermodynamic perturbation theory).
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EDPD versus time-stepping approaches Overview

I It is clear that there are overlaps in application of time-stepping and
event-driven methods.

I We can then compare time-stepping and event-driven simulation:

Time-Stepping
% Numerical integration.

! Simpler simulation algorithm.

Spring example: 32 Lines of code.

! Physical scaling laws directly
compatible (e.g., Hookes law, or
molecular dispersion ∝ r−6).

! Many validated models available.

? Faster for dense systems with
complex or long-ranged potentials.

EDPD
! Analytical solution of model

dynamics.

? Complex simulation algorithm.

Spring example: 90 Lines of code.

? Force models/Potentials are
tabluated.

? Fewer validated models available.

! Strong theoretical frameworks.

? Faster for low density or
coarse-grained models.

I With the recent advent of standard software packages (like DynamO), and
the TPT approaches allowing the fitting of potentials to experimental data,
these disadvantages of EDPD are being overcome.
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Features of DynamO Time-warp algorithm

Time-warp algorithm
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Features of DynamO Exact time averages

Exact time averages

I In molecular dynamics, properties such as pressure, energy, stress, are
measured by taking a time average:

〈A〉t = t−1

∫ t

0

A(τ)dt

where A(τ) is the value of the property at a time τ .
I In time-stepping simulation, this integral is approximated by regular sampling.
I Some properties are sampled every timestep (stress/pressure and energy).

More expensive properties are sampled at larger intervals or in post
processing (e.g., Gromacs and its trajectory file).

I For discrete models many properties do not change between events, therefore
the integral may be calculated exactly∫ t

0

A(τ)dt =
∑

a

∆ta A
−
a

where ∆ta is the free streaming time before event a, and A−
a is the property

just before it.
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Features of DynamO Exact time averages

Exact time averages

I This is required to evaluate properties which are a function of the
(impulsive) forces: pressure, viscosity, thermal conductivity.

I However, all properties which can be evaluated this way are, as it is
computationally cheap and more accurate.

I This is why DynamO has an output plugin architecture, and many
properties must be collected during a simulation rather than afterwards.
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Features of DynamO Stable algorithm and Magnet

Stable algorithm and Magnet

I Although event-driven dynamics is analytic, it is extremely sensitive to
round-off error.

I For example, round-off error in event times causes 50% of hard sphere
collisions to overlap slightly: U →∞!

I DynamO uses “stabilising” interactions to ensure the rare (10−9) but critical
“triple events” (see below) are recoverable1 .

1M. N. Bannerman, S. Strobl, A. Formella, and T. Poschel, “Stable algorithm for event detection in
event-driven particle dynamics,” Comp. Part. Mech., 1, 191-198 (2014)
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